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FRACTAL DIMENSIONS AND SINGULARITIES OF THE 
WEIERSTRASS TYPE FUNCTIONS 

TIAN-YOU HU AND KA-SING LAU 

ABSTRACT. A new type of fractal measures Xs 1 < s < 2, defined on the 
subsets of the graph of a continuous function is introduced. The J-dimension 
defined by this measure is 'closer' to the Hausdorff dimension than the other 
fractal dimensions in recent literatures. For the Weierstrass type functions de- 
fined by W(x) = A-aig(Aix), where A > 1, 0 < a < 1, and g is an 
almost periodic Lipschitz function of order greater than a, it is shown that the 
%-dimension of the graph of W equals to 2 - a, this conclusion is also equiv- 

alent to certain rate of the local oscillation of the function. Some problems on 
the 'knot' points and the nondifferentiability of W are also discussed. 

1. INTRODUCTION 

It is easy to show that if f E Lip(a) (the class of Lipschitz functions of order 
a), 0 < a < 1, then the Hausdorff dimension of the graph of f, denoted by 
Ff, does not exceed 2- a. On the other hand, there is no satisfactory condition 
to estimate the lower bound of the dimension of 1f . In particular, it is an open 
question that for A > 1, 0 < a < 1, the Hausdorff dimension of the graph of 
the Weierstrass function 

00 

(1.1) W(x) = Z -isin(A.i7x), x E R, 
i=l1 

(or more general, replace the sine function by a bounded differentiable almost 
periodic function) equals to 2 - a. Recall that for s > 0 the Hausdorff measure 
tJs is defined on subsets of Rn by 

Fs (E) = lim o',s (E), 

where 

g s(E) = inf {Z(diam Ui)s: E C U Ui , diam Ui < } 

{Ui }I are open subsets of Rn1. The Hausdorff dimension of E, denoted by 
p- dim E, is defined by F- dimE = inf{s > 0: Xs(E) = 0}. 
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There are many attempts in solving the problem stated in (1.1). Besicovitch 
and Ursell [1] gave a positive answer by modifying the term A-i to Ai such 
that Ai+I /,A increases to oc and log Ai+ / log Ai -- 1 . Kaplan, Mallet-Paret and 
Yorke [10] and Rezakhanlou [13] proved respectively that the box dimension 
and the packing dimension (see ?3) of Fw is 2 - a. Mauldin and Williams 
[11] using a Cantor set argument concluded that the Hausdorff dimension of 
Fw is greater than 2 - a - (c/ log A), provided that A is large. More recently 
the authors [7] considered the replacement of W by the Rademacher series 

00 

R(x) = 2-iRi(x), x E [0, 1], 
i=l1 

where R1(x) = sign(sin2nx), and Ri(x) = R1(2i-lx), i = 1, 2, ..., is a se- 
quence of Rademacher functions. They showed that if the distribution function 
F of R is absolutely continuous and F' E LP for some p > 1 , then the Haus- 
dorff dimension of FR is 2 - a. This is the case when a = 1 /n, n = 1, 2, ... . 
Furthermore the result is true for all 0 < a < 1 if a small perturbation of 2-ai 
in the sense of Kahane and Salem [9] is allowed [8]. The first result of the 
Rademacher series R(x) was also obtained by Przytycki and Urbanski [12] by 
using a dynamics argument; they also proved a more striking result: there exist 
some values of a (2c is a Pisot-Vijayaraghavan number) so that the graph of 
R(x) has Hausdorff dimension strictly less than 2 - a. 

The main purpose of the paper is twofold: First we introduce another type of 
measures XJS 1 < s < 2, on the subsets of the graph of a continuous function 
f, and define a new X-dimension index. While the Hausdorff dimension is 
determined by the measure using arbitrary open covers, and the box dimension 
is corresponding to covers with balls of equal size, the new scheme is a mixture 
of these two. The importance of such consideration is that 

(i) XS is a genuine measure on the subsets of Ff; 
(ii) With regard to the continuous curves, the X-dimension is an improve- 

ment (closer to the Hausdorff dimension) of the box dimension and other di- 
mensions in the literature (Theorems 3.1 and 3.2); 

(iii) JS(1f) is closely related to different variational norms of functions on 
R; 

(iv) It is a natural tool to deal with Lipschitz functions, especially for the 
Weierstrass type functions (Lemma 2.4 and ?4). 

Secondly, we study the local oscillation behavior of the Weierstrass type func- 
tions. For A > 1, 0 < a < B < 1, let g(x) defined on R be a bounded 
real-valued (Bohr) almost periodic Lipschitz function of order ,8, let W be a 
Weierstrass type function defined by 

00 

(1.2) W(x) = EA7aig(2ix), X E R. 
0 

By substracting a constant, we can assume, without loss of generality, that 
g(O)=0. Let 

00 

(1.3) V(x) = R aig(Aix), x E R, 
-00 
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then the series converges for all x, V is also known as the Weierstrass-Mandel- 
brot function. For any real-valued function f on R, e > 0, x E IR and any 
interval Ix containing x, let 

(1.4) E(f, e, Ix) = {y E Ix:If(y)-f(x)l/ly-xla > e, y :$ x}. 

Our main result is Theorem 4.1. We prove that V $ 0 if and only if X- 
dim F7, = 2 - a, which is also equivalent to that there exist positive numbers 

, i and c so that IE(W, e, Ix)I/IxII > c for every x E JR and every interval 
Ix containing x with I,xI < i7, where IAI denotes the Lebesgue measure of 
A for any Lebesgue measurable subset A of IR. This improves the previous 
results of Hata [6], Kaplan et al. [10], and of Rezakhanlou [13]. 

The singularities of the Weierstrass function have been attracting much at- 
tention for a long time (see [5, 6, 10 and 12]). Recently Hata made another 
detail study and strengthened most of the previous results by using expressions 
similar to (1.4). By modifying the idea of the proof of Theorem 4.1, we can 
improve some of his results. Our proofs are especially simple since we make 
use of the 'relatively dense sets' of almost periodic functions and the auxiliary 
function V(x) in (1.3) instead of his spectral approach. 

The paper is organized as follows: In ?2 we introduce the Xs-measure and 
the notion of the X-dimension. In ?3 we compare the X-dimension with the 
other dimension indices. We also observe that the XS-measure of the graph 
of f is related to some variational norms of f. The main part is ?4, which 
proves the equivalence between the fractal dimension and the local oscillation 
of W. In ?5, we follow the idea used in ?4, and improve a theorem of Hata 
on the 'knot' points of the Weierstrass type functions. Some remarks of the 
theorems and comparisons of the conditions used by Hata and Kaplan et al. 
are also given. 

Acknowledgments. The authors would like to express their gratitude to Professor 
T. A. Metzger and Professor W. B. Zeng for bringing to their attention some 
relevant literature. They also thank the referee for many helpful comments. 

2. A NEW DEFINITION OF DIMENSION 

Let f be a continuous function defined on [0, 1] with graph Ff . For any 
open interval I of [0, 1], let q1 be the least number of open squares I x I' 
whose union covers f (I). It is clear that 

(2.1) q- 1 < osc(f, I)/Ill < q1, 

where osc(f, I) denotes the oscillation of f on the interval I. Let s > 0, 
and let P be the natural projection from R2 to IR defined by P(x, y) = x. 
For any subset E of Ef and arbitrary open cover W of P(E), define 

(ps(E W) =,qj Ils, 
IEW 

and 
Js(E) lim inf qs(E, W), 

where ? = sup{ Il: I E W}. A routine check shows that Xs is an outer 
measure on Ff . As usual we call a subset E of Ef XS-measurable if XsS(A) = 
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Xs(A n E) + Xs(A n EC), for all subsets A of 1f; XS is then a measure on 
the a-algebra of all XS-measurable subsets. It is also easy to check that XS 
is a metric outer measure in the sense that XS (E U F) = X-YS(E) + Xs(F), 
whenever the distance in JR2 between E and F is positive, hence it follows 
from an argument of Caratheodory that all the Borel subsets of 1f are Xs- 
measurable (see [4, pp. 5-6]). 

We remark that X-S can be defined similarly on all subsets of 1R2, however, 
in such case, it would not be an outer measure any more. 

We omit the simple proof for the following proposition which excludes the 
trivial cases of s. 

Proposition 2.1. Let f be a continuous function defined on [0, 1]. 
(i) If 0<s< 1, then X-fS(Ff) =oc; and 
(ii) If s > 2, then Xs%(E) = O for any subset E of Ff. 
The XS-measure of 1f can be put into the following simpler form in con- 

nection with the variational norms which will be considered in the next section. 

Proposition 2.2. Let f be a continuous function defined on [0, 1], and let 1 < 
s < 2, then 

(2.2) XS (Ff) = lim inf E osc(f, Ai) lAi Is, 1 

where I = {O = xo < xl < < Xn = 1} is a partition of [0, 1], Ai = 

[xi,, xi), and HI1 = max lAsI. 
Proof. We first show that the left-hand side of (2.2) is not greater than the right- 
hand side. Let M= osc(f, [O, 1]). For J > O, let 11 = {O = xo < xl < < 
Xn = 1} be a partition of [0, 1] with E lAi Is < 6. Notice that such a partition 
can be found because s > 1 . Let q > 0 be such that nM(2q)s-I + n(2q)s < (. 
Let ' be the open cover of [0, 1] consisting of AO, the interior of Ai, and 

ti=(Xi - i, xi + q), i = 1, ..,n. Then by (2.1), 
n n 

s O 1] W) =EqAo lAi Is + Lqs, lAils 

n n 

< Z(l + osc(f, Ai)/IAjI)IAjIs + Z(l + M/2,,)(2,,)s 
i=1 i=1 

< 26 + Zosc(f, Ai)lAiIs-l . 

By letting 6 -- 0, the inequality follows. 
Conversely let 6 > 0, and let ' be an open cover of [O, 1]. By the com- 

pactness of [0, 1] we can assume that ' is finite, it is easy to construct a 
partition 11 from ' such that 

EqA,o lAi Is < E: q, gIII 

Applying (2.1) we obtain 

Zosc(f, A1)IAiIs-l < Z q4 Ils. 
I-I1eI 

By taking the infimum the lemma follows. 
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In the definition of XS, if we replace the cover ' of open intervals and 
the corresponding open squares by nonoverlapping half open dyadic intervals 
and dyadic squares respectively, we obtain another measure 5XS (see [4, pp. 
64-65]), and we have 

Proposition 2.3. For any subset E of Ff, Xs(E) < X'ss(E) < cXsJ(E), for 
some constant c independent of f and E. 

Analogous to the Hausdorff dimension we define the dimension index in 
terms of J-7 by 

X- dim If = inf{s > 0: XS(f) = 0}. 

It is easy to show that it also equals sup{s > 0: Xs(f) = oc}, and by Propo- 
sition 2.1, 1 < 5- dim rf < 2. 

The following simple lemma gives a useful criterion for the lower bound 
of 5- dim If, in particular when f E Lip(a). It will be used to study the 
Weierstrass type functions in ?4. 

Lemma 2.4. Let 0 < a < 1. Suppose that there exists a subset A of [0, 1] 
such that JAI > 0, and limlIl00osc(f, Ix)/IIxIa > 0, for all x E A, then 
X2-a (rf) >0, and hence %- dimFf > 2 - a. 
Proof. The hypothesis implies that there exist i > 0 and c > 0 such that 

(2.3) {x E [0, 1]: inf osc(f, Ix)I xIc > c} > 0. 

Let E be the subset in (2.3). For any open cover ' of [0, 1], let W' be the 
collection of all those I in ' intersecting E. Then, using 6 < ii, we have, by 
(2.1), 

X2-,(Ff) > lim inf Z clIl > clEl, 

proving the lemma. 

3. COMPARISON WITH THE OTHER DEFINITIONS 

Let E be a subset in R2, and let Mn(E) be the smallest number of open 
balls of radius 1/n needed to cover E, define the lower box dimension by 

6 (E) = lim log Mn (E) 
n~ log n 

and the upper box dimension A(E) by replacing limn with limn . It is obvious 
that 6(E) < A(E), and if the equality holds then the common value is called 
the box dimension of E. 

Theorem 3.1. Let f be a continuous function on [0, 1], then .- dim Ff < %- 

dimFf < (7f). 
Proof. It suffices to prove the second inequality. It is known that the open balls 
in the definition of Mn (E) can be replaced by dyadic squares of equal size 2-. 
Also note that the x-projections of these squares form a cover ' of [0, 1] of 
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dyadic intervals of equal size. For any s > 5(f)f, then limb, M2n (7f)*2-ns < 
1 . It follows that 

'sI(r(Ff) < lim E q1iIS = lim M2n(Ff) 2-ns < 1 
noo 

IE 
noo 

Using Proposition 2.3 we see that 5- dim 7f < s, and the proof is completed 
by letting s - b(ff) . 

One of the shortcomings of the lower (and upper) box dimension is that 
6(E) = 6(E), where E is the closure of E. To eliminate this one may define 

3 (E) = inf {sup5(Ei): E C U Ei 

and define A similarly. Then 3 < a and oF- dim < 3 < < A. Note that A 
is also equivalent to the packing dimension recently introduced by Taylor and 
Tricot (see [14, 15 and 16]). 

For any interval I of [0, 1] let fI be the restriction of a function f on I. 
In comparison with k- dim we have 

Theorem 3.2. Let f be a continuous function on [0, 1]. If the values of X- 
dim Vf, are equal for all open intervals I of [0, 1], then X- dim 1f < 3((f)f. 
Proof. By using the relation (5(E) = 3(E), it is easy to verify that 3(Ff) also 
equals to inf{supi 3(Ei): 1f C U Ei, Ei C 1f}. For arbitrary sequence of {Ei} 
in R2 whose union covering 1f, by the Baire's theorem, there is at least one of 
them with x-projection containing an interval I. The hypothesis and Theorem 
3.1 (still valid with 1f replaced by Vf, ) imply that sup (Ei) > 6(Ff1) > k- 
d im1f7 = X - dim 1f . This completes the proof since {Ei} is arbitrary. 

For 1 <p < oo, let 

IfI1P = lim inf Eosc(f, Ai)IAil1-1/P, 

and let 
IIfIIp = lim sup Eosc(f, Ai)IAi'-1/P, 

then both I lP and 11 IlP are seminorms. As already proved in Proposition 2.2, 
if f is continuous and 1 <p < oc, then Iflp = 2-1/p(rf) . We use 71'P and 
VP to denote the two classes of functions for which If lp < o0 and If Ilp < 00 

respectively. It is clear that VP C 71'P, and if Pt < P2 then 71PI C 7/P2 and 
VPI C VP2. 

Proposition 3.3. For 1 < p < oo, let f E 771P, then 
(i) f is bounded; and 
(ii) if 1 < p < oo, then f is continuous almost everywhere with respect to 

A"-t for every t < l/p. 

Proof. (i) Suppose that If IP < o0, then ,f osc(f, Ai)IAiAI/IP = M < 00 for 
some fixed partition 11 = {O= xo < x <... < xn = 1}. We have 

sup If(x) ? If (?)I + n * sup osc(f, Ai) < If(0)I + n * M/ min 1Ai11 -'1P < 0c. 
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To prove (ii), let E = {x E [0, 1]: f is not continuous at x}, and suppose 
that kI-t(E) > 0, where t < i/p. There exist a subset F of E and q > 0 
so that *`-t(F) > 0 and osc(f, Ix) > q, for every x E F and any interval 
Ix containing x. 

Let 17 be any partition of [0, 1], and let A' , . A.. , A be all those subinter- 
vals of H whose union covers F, then 

k k 

Eosc(f , Ai) lAi I- /P > Eosc(t, 5 ') IA' i1-1/p > {/,t jAll/p 
H i=l i=1 

? iiq?'tj>1-(F) --* 1/ (F), when 11 - 0. 

Since Xl-t(F) > 0, thus ?l-l/P(F) = oo, this implies that Iflp = oo, con- 
tradicting that f e 2P . 

Corollary 3.4. V?? = %??'O and is exactly the class of boundedfunctions. 
Proof. In view of Proposition 3.3(i), we only need to see that every bounded 
function is in V??, but this follows directly from the definition. 

Proposition 3.5. For 1 < p < oo, f E VP if and only if 

lim sup Z If(xi) - f(xi)I IAl11 1/p < 00. 

In particular, f E V1 if and only if f is of bounded variation. 

Proof. It suffices to show that there is a constant c such that 

(3.1) clIflIp < lim sup , If(xi) - f(xii)1 IA,ll1/p . 
-5-4O+ II1< H 

For any partition Hl = {O = xo < xl < < xn 1}, we can find two 
points yi and zi in each Ai so that If(zi) - f(yi)l > osc(f, Ai)/3, and that 
zi - yi > lAiI/3 . Thus 

If(zi) - f(yi) I I zi - y IIl/P > osc(f, Ai)lAi 1'" II/32P /3 

Form the new partition II' which includes the points of Hl and of {yi, zi: i = 

1, ...,n}, then 

n 

E If(xi) - f(xi_ ..I)Ai IA '/p > i If(zi) - f(yi)I IzI - yiL I/P 
H, i=1 

> 31/p-2 E osc(f ,Ai) lAil 1/P 
H 

proving (3. 1). 

For 1 < p < oo, let BVP = {f: supEnlf(xi)-f(xi_1)lp < oo} be the 
class of functions of bounded p-variation (see Wiener [1 7]), and let P = 
{f: lima ,0+ inf11,<6 Z,(osc(f, Ai))P < oo} be the class of functions of bounded 
weak p-variation (see Goffman and Loughlin [3]). 
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Proposition 3.6. Let 1 < p < oo, then Lip(1/p) C BVP C VP, and XF7P C 
/P . 

Proof. The proposition follows from the Holder inequality that 

E f(xi) - f(xi-1) I lAi I'-'IP < (E f(xi) - f(xi-1) l P) (E lAil 
11/ 

- (S If(xi) - (xi-)IP) 

From Proposition 2.2, we see that if f is a continuous function then X- 
dim 1f actually equals to inf{2 - l/p: If IP = O}. We can also define an analog 
dimension index by 

K- dim Ff = inf{2 - l/p: llf Ilp = ?}. 

This dimension index dominates the previous ones in the following sense: 

Proposition 3.7. Let f be a continuous function on [0, 1], then A(Ff) < K- 
dim f . 

Proposition 3.8. Under the assumption of Lemma 2.4, if f E VP, then 0 < 
2-fl/P (rf) < 00, and 5- dim Ff = K- dimFf = 2 - I/p. 

4. THE MAIN THEOREM 

For the rest of this paper we will fix 0 < a < f8 < 1. Let g(x) defined 
on 1R be a real-valued (Bohr) bounded almost periodic Lipschitz function of 
order ,B . For simplicity, assume that g(O) = 0, I g(x) - g(y) < Ix - Y1fi for 
all x, y E 11 and supIER Ig(x)I < 1. Let W(x), V(x), and E(f, , I,) be 
defined by (1.2), (1.3), and (1.4) respectively. W is clearly an almost periodic 
function, but V is not. Indeed this follows directly from the equation 

(4.1) V(A1x) = A'iV(x), x E 11, 

for any integer i. 

Theorem 4.1. The following statements are equivalent: 
(i) V 0; 
(ii) There exist positive numbers c, C and c such that IE(W, c, IJ)I/II I > c 

for every x E R and every interval I, containing x with IXI <'; 
(iii) 0 < X2-a (Fw) < 00, in this case X- dim Fw = 2 - a. 
Moreover the above equivalence is still valid if W in (ii) and (iii) is replaced 

by V. 

Before proving the theorem we make some remarks. 

Remark 1. We cannot replace V by W in (i), this can be justified by the 
following example essentially due to Kaplan et al. [10]: 

Let r(x) be any bounded almost periodic Lipschitz function of order ,B so 
that X-dimFr equals 2-,8 and r(O) = 0. Then g(x) = r(x) -A-r(Ax) is also 
such a function. A simple computation shows that W(x) = 0 A-aigQRx) = 
r(x), thus X- dim Fw = 2 -,8. 

Remark 2. From Theorem 4.1, we can deduce that W and V satisfy the hy- 
potheses of Theorem 3.2, thus 3(Fw) = A(Fw) = 2-a, and the same conclusion 
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holds with Fw replaced by Fv. This improves the corresponding results of 
Kaplan et al. [10] and of Rezakhanlou [13]. 

Remark 3. Statement (ii) of Theorem 4.1 is the conclusion of Hata's Theorem 
2.1 in [6]. A comparison of his conditions and that V 0 0 will be given in 
Proposition 5.6. 

We need a lemma to prove the theorem. A subset D of 1R is relatively dense 
if there is a number h > 0 such that every interval [x, x + h], x E 1R, contains 
at least one point of D. It is known that a continuous function g is almost 
periodic if and only if for any e > 0, there is a relatively dense subset D = D(c) 
of 11 suchthatforevery TeD wehave lg(X+T)-g(X)l <e, forall x E R 
(see [2]). 
Lemma 4.2. If there exist y E R and a > 0 such that V(y) > 3a (or < -3a), 
then there exist a relatively dense subset D of R, an integer r, and a positive 
number a such that 

(W(7-n(t + y)) - W(A-nt))/)-7n > a (or < -a), 
for all n > r and every t E UTED(T - a, T + a). 
Proof. Let r be a fixed integer to be determined in the proof, and let Vr(t) = 

Er -g(Alt). By the hypothesis on g, Vr E Lip(fl) and Vr is an almost 
periodic function. Let D be the relatively dense subset of 1R such that for 
every T ED, 

I Vr(t + T) - Vr(t)l < a/4, for all t E R. 
Since Vr(0) = 0, hence IVr(T)I < a/4 for all T E D. Let Mr be the Lipschitz 
constant of Vr. Let a = (a/4Mr)1/,, then for n > r, and t E (T - (, T + U), 
where T E D, we have 

W()7 (t +y))- W()7 t) 
n-r-1 fn+r o 

= E ZE + ,) i(g(Ai-n(t +y)) - g(Ai-nt)) 
i=O i=n-r i=n+r+l1 

=S1 +S2+S3. 
If r is chosen so that 

(4.2) Vr(y) > 3a, 
then 

n+r 

S2 = E A-ai(g(.i-n(t + y)) -g(i-nt)) 
i=n-r 

r 
=-aZn A-)i(g(Ai(t + y)) - g(2it)) 

-r 
= )-afn (Vr(t + y) - Vr(t)) 
- ) (xl{ Vr(y) - [Jr(y) - Vr(T + y)] - [Vr(T + Y) -Vr(t + y)] 

- [Vr(t) - Vr(T)]- Vr(T)} 

> A-an[3a - a/4 - 2Mr(al4Mr) - a/4] 

- 2aA-an. 
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If r satisfies 

(4.3) -IylA(a-f)r1(Af-a- 1) < a/2, 

using the Lipschitz condition of g(t) then 
n-r-1 

(4.) |1 | A-aE i CiAi-nylfl < aA-anl2. 
i=o 

If further r satisfies 

(4.5) -/ar(a 
_ 1) < a/4, 

then 

1S31 < 2 7 A-ai < aA-on/2. 
i=n+r+ 1 

The lemma follows from the following inequality: 

W(7 n(t + y)) - W(7 nt) > S2 - IS, I _1 S31 > a)7an, 

provided that r satisfies (4.2), (4.3), and (4.5). 

For x E 1R and any subset A of 1R, let x + A = {x + a : a E A} and let 
xA = {xa : a E A}. 

Proof of Theorem 4.1. (i) =X (ii): Since V 0,wecanfinday E11. Rand a > 0 
such that IV(y)I > 3a. Let a > 0, integer r, and the relatively dense D be 
as in Lemma 4.2. Let h > 0 be such that every interval [x, x + h], x E R, 
contains at least one point of D. Without loss of generality assume that a < h 
and O <y < h. 

Set q = A-rh. For any x E 1R and any interval Ix containing x with 
I< I, let n be the least integer so that 

(4.6) 4h < ?nIjxl, 

then n > r, and we can find some T E D such that both (T - (, T + a) and 
y + (T - (J, T + a) are contained in AnIx . Pick any t E (T - (J, T + (), it follows 
from Lemma 4.2 that 

a < I W(A- (t + y)) - W(A-n t) 

(4.7) a<n 
< IW(A-n(t+y)) - W(x)I + IW(x) -W(A-nt) 

- i~~~-nct A-ncx 

Then 

I IW(A-n(t +y)) - W(x)I IW(_ nt) W(x)|I 
max IA-n(t + y) - IW( 

I 
IA-ntWXl( } 

(4.8) > max W(-n (t+ y)) - W(x)I W(A-nt) - W(x)I} 

> a12(AnIj Ix)a (by (4.7)) 
> (by (4.6)) 

where e = a(41h)0/2. Since t E (T - (, T + () is arbitrary, the above es- 
timate implies that IE(W, c, Ij > 2A)-n. Again by (4.6) we obtain that 
IE(W, c, Ix)I/Ixl ? c, where c equals to a/2hA. This proves (ii). 
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(ii) = (iii): For any x E 1R and every interval Ix containing x with I I 
small enough then 

osc(W, Ix) > sup lW(s) - W(x) 
sEE 

> e sup Is - xl' > C(ClIxI/2)a, 
sEE 

where E = E(W, c, Ix). Hence lim1I ,0osc(W, Ix)/IIxIa > 0, for every 
x E 11R. Observe that W e Lip(a) C VI/a, thus (iii) follows from Proposition 
3.8. 

(iii) => (i): Since (W - V) E Lip(,8), it follows from Proposition 3.8 that 
the 5-dimension of the graph of (W - V) is less than 2 - ,B, hence V 0 0. 

By using (W - V) e Lip(fl), it is easy to show that the theorem remains true 
with W replaced by V. This completes the proof of Theorem 4.1. 

Remark 4. Lemma 4.2 and Theorem 4.1 remain true if we relax the condition 
that g(x) e Lip(f,) to be 

sup g(x+h)-g(x)l =o(lhlh/(loglhl)P), ash --O, 
xER 

for some p > 1 . All we need to adjust is the estimate of SI in (4.4): 
n-r-1 

IS, I < C E i-coilAi-nylol(log lAi-nyl)P < aA-ckn/2, 
i=O 

where c is a positive number as small as we like. 
We conclude this section by giving a simple criterion to guarantee that V g 0. 

Proposition 4.3. Let g e Lip(f,). Assume that there is a c > 0 such that 
G(x) = f1x g(t)dt > 0, for 0 < x < c < oo, and M = G(a) > 0, for some 
a e (0, c]. Let m inf{G(x): x e (aA, oo)}, if M > (-m)/(Aa+1 - 1), then 
V o. 
Proof. Since V(x) = Ar-tig(Aix) converges uniformly on compact sub- 
sets, integrating term by term gives 

a O oo 
j V(t)dt= + + A-(a+1)iG(ia) 

00 

> G(a) + m ,-(a+l)i = M + m/()+f - 1), 

proving the proposition. 

The condition of Proposition 4.3 can be applied easily, e.g., to the classical 
cases: g(x) = sinx, or g(x) is of period 1 and equals to 1 - 11 - 2xI on [0, 
1] (the corresponding W is called the Takagi function). Actually in both cases 
we have m > 0. 

5. SINGULARITIES OF THE WEIERSTRASS TYPE FUNCTIONS 

For any real-valued function of R, we let 

D+f(x) = lim sup f (x + h) f (x) and 
h,O+ h 

D+f(x) = lim inf f(x + h) f (x) 
h,O+ h 
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be the upper right derivative and the lower right derivate of f at x . Similarly 
we can define the upper and lower left derivative of f at x, denoted by D-f (x) 
and D_ f(x) . A point x e 1R is called a knot point of a real-value function f (x) 
provided that 

D+f(x) = D-f(x) = oo, and D+f(x) = D_f(x) = -oo. 

The set of knot points of f(x) is denoted by Knot(f). Another type of 
singularity, in contrast to the knot point, is the notion of differential coefficient 
oo at x defined by D+ f (x) = D- f(x) = D+ f (x) = D_ f (x) = oo . For e > O, 
q > O and x e R, let 

(5.1) EP(f,,e C) IS e (X, X+5): (f(s)-f(X))IIS-XI' > , 

and 

(5.2) Exn(f, c, i) = {s e (x, x + C): (f(s) - f(x))/Is - xla < -} 

Similarlydefine EP(f, 8, - l) and Ex(f, c, - q) with (x, x+iq) in (5.1) and 
(5.2) replaced by (x - i, x) respectively. 

For the rest of the section, unless specified, W and V will be defined by 
(1.2) and (1.3). 
Theorem 5.1. Suppose that V - 0, then there exist positive constants e and c, 
and a dense G,e-subset G of R with I1R\\GI = 0 such that for every x E G, 

lim min E (W,c,ii)I IE(W,c,8)I 
(5.3) nW0+ { '1 1 

ExP(W,,e ,-q)l lEx(W >) X C. 
'1 ' 1 )J 

In particular, Knot(W) contains a dense G6-set, and Rl\ Knot(W) is of 
Lebesgue measure zero. Moreover, the theorem remains true with W replaced 
by V. 

Remark 1. The above theorem (without the dense G, part) is stated in Hata [6, 
Theorem 3.1 ] with some other assumptions (see the remark before Proposition 
5.6). It seems that there is a gap in his proof (p. 77, line 1 1), and his conclusion 
in (5.3) can only be stated as the minimum of the limit supremum of the four 
terms greater than c instead. 

Remark 2. By modifying the example in Remark 1 of the last section, we see 
that V cannot be replaced by W in the assumption. 

We need the following two lemmas to obtain an estimation analogous to (4.8) 
in the proof of Theorem 4.1. 

Lemma 5.2. Given that A > 1, and a > 0. Let D be any relatively dense subset 
of R. Then there exists a dense G,-subset G of R with IR\GI = 0 satisfying: 
for every x e G, z e R, there exists infinitely many positive integers n such 
that 

(5.4) An e Z + U (T-, T + ). 
TED 

Proof. Without loss of generality assume that z = 0. Let I be any open 
interval with III < oo, let h > 0 be such that every interval (x, x + h), 
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x e 1R, contains at least one point of D and that 2u < h, and let U = 
UTED(T - C, T + a). For each positive integer p, let Bp = (API) n U, and let 
Ap = A-PBp . Then it is easy to check that for each n > 1, Up>n Ap is open 
and dense in I. Let A = nn>l UpnAp,, then A is a dense Ga-subset of I, 
and each x e A will satisfy (5.4). 

We will complete the proof by showing that JAI = II, or equivalently, 
I Up>n Apl = II for arbitrary n. Suppose this is not true, let Gn = Up> An,, 
and assume that JI\GnI = q > 0. Then we can find a sequence of disjoint 
intervals {Ii}l of the form [a, b) n I such that J = Ui> IIi covers I\Gn and 
that 

(5.5) IJI < q + 6, 
where e is a small positive number which will be determined later. 

For each i, choose an integer ki > n such that 

(5.6) Ak III > h + 2a > Ak1l Ii. 

This can always be done by reducing the size of Ii if necessary. Let B' 
()kIi) n U, and let Ck - -klBi. Since )k'Ii contains at least one interval 
(T - C, T + C) for some T e D by (5.6), hence 

ICkI/IIiI > (A-k'2a)/Ii I > (7-k 2a)/7-(k,-1)(h + 2a) = 

where c = 2a/)(h + 2a). By the definition of Ap we see that Ck, C Ak, C Gn- 
Observe that Ck, C Ii, the above estimate yields 

00 00 

IJGn =ZlIIifnGnl >? ZCIIi ? c1. 
i=l 1 

Since IJ\GnI = JI\GnI = ', thus IJI = IJ n Gnl + IJ\GnI > C + ci, this 
contradicts (5.5) if we choose e < ci, and the proof is completed. 

If V 0 0, by Theorem 4.1 we see that V is nowhere monotone, therefore 
we can find a positive number a > O, and z, xi, and yi in [0, oo), i = 1, 2, 
such that xi < z < x2, Yi < Z < Y2, and they satisfy 

V(xi)- V(z) > 3a, and V(yi)- V(z) < -3a, i= 1, 2. 

By an obvious modification of the proof of Lemma 4.2 we can prove the fol- 
lowing 

Lemma 5.3. If V - 0, then there exist z, xi, and yi, i = 1, 2, as above, and 
there also exist a relatively dense subset D of R, a > 0, a > 0 and an integer 
r such that 

(W()-n (t + x)) - W(7-n t))/I-7n > a, and 

(W(7-n(t + y)) - W()7-nt))/)-an < -a, 
for all n > r, t e z + UTED(T - C, T + a), X E xi - z + (-a, a) and y E 
Yj-z + (-v, a), i = 1, 2. 
Proof of Theorem 5.1. We use the same notations as in Lemma 5.3. Let h > 0 
be such that every interval (x, x + h), x E R, contains at least one point of 
D and that X2 < h, Y2 < h and a < min{lxi - zl, 1yj - zl: i = 1, 2}. By 
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Lemma 5.2, there exists a dense Gq-subset G of 1R with IR1l\GI = 0 satisfying 
for every x e G, there exist infinitely many positive integers n such that 

Anx e Z + U (T- , T + Y). 
TED 

For each x e G, we can find ni = ni(x) > r and Ti e D, i = 1, 2, ...,such 
that 

(5.7) AR,X e Z+(Ti-C, Ti+ f). 

Let ni = 3h)-n. Then )nPx + (x2 - z) + (-U, (X) is contained in the interval 
An, (X, x + qi) . Hence for arbitrary x- E x2 - z + (-ca, a), y = A- n, we have 
x + y e (x, x + 'i). Thus (5.7) and Lemma 5.3 imply 

(W(x + y) - W(x))/1-n,a > a. 

Hence 

(W(x + y) - W(x))/y = (W(x + y) - W(X))/(A-n,)a > ee 

where e = a/(3h)a. This implies that jEP(W, c, qi)l > 2u7-nf . Therefore 
IExP(W, , qi)I/ri > c, where c = 2a/3h. 

Similarly we can prove that IExn(W, 8, cqi)lli, IEP(W, 8, -qi)I1ij, and 
IExn(W, , -i)I/1ij are greater than c. Thus the theorem follows by letting 
i , 00. 

It is trivial to see that for those x where local maximum or local minimum 
occurs, then x cannot be knot points. Furthermore, as pointed out by Hardy 
[5, Theorem 2.71] that if A-c(A + 1) < 2, then W defined by (1.1) has the 
differential coefficient oo at the origin, and hence the origin is not a knot 
point. In general, we have 

Proposition 5.4. If V 0 0, then W (defined by (1.2)) has the differential coeffi- 
cient oo at the origin if and only if V(x) > 0 for all x > 0, and V(x) < 0 for 
all x < 0. 

Proof. Assume that V(x) > 0 for all x > 0 and V(x) < 0 for all x < 0. 
Applying Lemma 4.2, and noting that 0 can be selected into the relatively dense 
subset D, we have for large n 

W()-ny)/A-o,n > 0, for all y > 0; and 

W()7ny)/)A-on < 0, for all y < 0. 

Hence W has the differential coefficient oo at the origin. 
Conversely, if V(y) < 0 for some y > 0, then by Lemma 4.2 and the 

equation (4.1) we obtain that 

lim W(x)/x =-oo or 0, 

this contradicts to limx,0+ W(x)/x = oo. Hence V(x) > 0 for all x > 0. 

Corollary 5.5 (Hardy). If A-c(A + 1) < 2, then W defined by (1.1) has the 
differential coefficient oo at the origin. 
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Proof. For any x > 0, choose an integer r such that Ar-IX < 1/2 < Arx. By 
using the inequality sinx/x > 2/ir, for 0 < x < 7r/2, we obtain 

r-1 o 

V(x) = A-> i sin(,Airx) + > A-ai sin(Arirx) 
-oo r 

2 ro 
> 21:A-aki(Ai7Xx)_A-ai 

7r~~~~~~~~ 
-oo 

r 
=[2XArl/(Al- _-k 1 )1/ (1 _ i-ak) ]A-ar 

> [1/(,l-a - 1) - 1/(1 _ -a)]A-ar > 0 

with the given condition. Since V(x) is an odd function, we thus have V(x) < 
0 for all x < 0, proving the corollary. 

To conclude this section we will give a discussion of the condition V g 0 and 
the conditions of the Fourier coefficients of W used in Hata [6] and Kaplan et 
al. [10]. For any bounded real-valued almost periodic function f and 4 e 11R, 
let 

f() = lim ? f f(x)e-'Xxdx T-4oo T J 

to be the Fourier coefficient of f, then 

og(X) - k(4)eix. 

It is known that the set S = {f: 4(4) = O} is at most countable, and the 
Fourier coefficient W(4) of W is given by W(4) = E aig()i-); here we 
are summing only those i for which A-)' E S. Hata [6, Theorem 2.1] proved 
(ii) of Theorem 4.1 by assuming the conditions g E Lip(13) and 

(5.8) lim 14 W(4) > O. 

In his theorem of knot points of W, [6, Theorem 3.1], he made use of the 
condition (5.8) and 

(5.9) Eakg)j < 00, 
c>O 

(condition (5.9) has also been used in Kaplan et al. [10]). To compare these 
conditions with the condition that V 0 0, we have 

Proposition 5.6. Let Vk(x) = Zk -aig(iX), consider the following state- 
ments: 

(i) limk-, o Vk() > 0, for some E R; 

(ii) limOO+0 J4aW(4)j| > O; 
(iii) V 0 O. 

If g E Lip(,B) with g(O) = 0, then (i) X (ii) X- (iii). If in addition assume 
that g satisfies (5.9), then these three statements are equivalent. 
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Proof. (i) a (ii). (Without assuming that g E Lip(,8).) Let c E JR so that 
limk. IVk() > 0, and let ,k - k then 

00 

lim IkaW(4k) I = kla liM , ,J(k-i)a4(Ak-ii 
k--+oo k -oo 

00 

= a tim Z )l-aig 
k--oo 

i=-k 

(ii) = (i). We apply a method of Hata [6, p. 65]. Let Uk(x) = Vk(x) - (x) 
then there exists M > 0 such that supk IUk(x) - Uk(y)I < MIx - y Now for 
any integer n and > O, 

IUk(4) = li 2nn 1ni Uk(x)e -ixdx 

2,n NIf27r/ 
- 

2knr N 2kn\1 
Y 

[Uk ( +x) -Uk e-a4xdx 

< lim ~ Z[ Mxfldx 
n-oo 27rnl _0J 

where c = M(27)fl/(l +,B). Note that Uk(@) = Vk(4)- W(4), hence (ii) implies 
that for all sufficiently large 4, limk,o I Vk(4) > 0. 

To see the relation between (ii) and (iii), observe that if the condition g E 
Lip(,8) (respectively g satisfies (5.9)) is assunmed, the (ii) implies (respectively 
is equivalent to) the second statement of Theorem 4.1 (see [6, Theorem 2.1 and 
Theorem 2.4] respectively), but the latter is equivalent to (iii). 

Remark. The equivalence of (i) and (iii) was also proved by Kaplan et al. [10, 
Proposition 2.2] under the conditions that g is a smooth function and satisfies 
(5.9). 
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